
Performance estimation and application mapping on different GPUs

Abstract
The objective of my research is to get benefit of advancement in GPU architecture in the state of art software

framework. Our work is divided into two parts; first, we have developed a model to estimate performance of GPUs
with cache, second, we have analyzed the existing map-reduce framework to optimized the same for new GPU
architectures. For performance estimation of GPUs with cache, first we try to estimate computation time and then
follow it up with estimation of memory access time. We have developed a model to count the number of instructions
in the kernel. We have found our instruction count methodology to give exact count. Memory access time is calculated
in three steps; address trace generation, cache simulationand average memory latency per warp. Finally, computation
time is combined with memory access time to predict the totalexecution time. This model has been tested with
micro-benchmarks as well as real life kernels. We have foundthat our average estimation errors for these applications
range from -7.76% to 55%.

In the second part of our work, we have enhanced the performance of MARS Map-Reduce(MR) framework.
These improvements are mainly in the context of different GPU architectures. Our experiments show an average of
2.5x speedup of MARS MR framework on Fermi architecture. Cache reconfiguration effect is also explained here.
Depending upon the application, we have achieved performance benefits ranging from 10% to 200% for various
cache sizes. Our optimized group phase gives an average of 1.5x speed up. Which has been achieved by reducing the
number of comparisons per thread. In the other significant optimization technique, delayed writing during auxiliary
functions is implemented. This reduces significant cache misses and thus achieved about 2x to 6x speedup for these
functions.

1

1 Introduction
Due to power and temperature related issues, the increasingCPU frequency to improve performance is not a viable
option. Possible alternatives for this problem are many core processors, specialized accelerators and re-configurable
architectures [1]. Accelerator specific coding demands significant time and skill. Moreover, mapping of kernels to
an accelerator is an iterative process before a “near” optimal mapping can be obtained. To reduce the number of
iterations, it is better to predict approximate performance of the kernels in advance. Estimation of performance can be
done either using developed empirical expressions or by simulation. Some mathematical models [4] have been used
for estimating performance on traditional GPUs. But there is no prior work, to the best of my knowledge that model
the execution time of GPUs with cache. As modern GPUs have cache hierarchy and as the proprietary information on
the internal details of the architecture is not shared/publicly available, this task becomes even more complex.

Different accelerators exhibit different ways of mapping for the same kernel. Map-Reduce (MR) is dedicated to
processing large distributed data sets and mainly used for web applications [2]. MR framework works in two phases;
map phase and reduce phase. Map phase is responsible for the execution of kernel in parallel on all cores of GPU.
Reduce phase may not have as many instances as map phase but they are responsible for accumulating the output of
map phase into final result. All inputs and outputs of map phase and reduce phase are in the the form of Key/Value
pair. This makes the model quite generic. It provides a uniform interface structure irrespective of the application [3].

Our study here presents comparative merits and demerits of MR framework for different GPU architectures. We
have studied and experimented with the MARS MR framework [3]developed for traditional GPUs before exploring
its behavior for the Fermi architecture. We have implemented two optimization strategies and achieved significant
performance improvements. The GPUs 9800GT, Quadro600 and GTX590 are used in our experiments.

2 Methodology
First we explain the methodology for the performance estimation for GPUs with cache. We have prepared a variety of
test cases and analyzed the results [5]. This work is dividedinto two parts; first we calculate computation cycle and

1Arun Kumar Parakh, Dept of Computer Science and Engg, IndianInstitute of Technology Delhi, New Delhi, India, aparakh@cse.iitd.ac.in

1

comp. Mem. comp. Mem. comp.

comp. Mem. comp. Mem. comp.

comp. Mem. comp. Mem. comp.

comp. Mem. comp. Mem. comp.

six comp. + two Mem.

(a) Basic theme

instfirstlaunch

instblock2block

inst_exec_final

additional blocksactive blocks

inst_kernel

(b) Instruction count

Figure 1: GPU execution style

Exec cycles = Mem cycles+ Comp cycles+
Comp cycles

#Mem inst
× (N − 1) (1)

Comp cycle single type = inst exec final× inst clock cycles (2)

Comp cycle multi type = Comp cycle ker sched− warpsblock × blocksadditional (3)

Mem cycles =

∑#Warps

WarpID=1(
∑#mem inst

mem inst=1(MAX latency)mem inst)WarpID

#Warps
(4)

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12

in

st
ru

ct
io

s

#Blocks per SM

Test Kernel: #instructions in kernel = 4

Actual
PTX

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

in

st
ru

ct
io

s

#Blocks per SM

Matrix Multiplication

Actual
PTX

(a) PTXvsActual

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12 14 16 18

#I
ns

tr
uc

tio
ns

#Blocks per SM

Blowfish algorithm: #instructions in kernel = 826

Measured
Estimated

 0

 100

 200

 300

 400

 500

 600

 700

 0 1 2 3 4 5 6 7 8

#I
ns

tr
uc

tio
ns

#Blocks per SM

Matrix Mul: #instructions in kernel = 11

Measured
Estimated

(b) Blowfish and MM

Figure 2: measured vs estimated instruction count

then calculate memory cycles. Figure 2(a) shows that instruction count from PTX file is different from actual count. In
computation cycles, we have devised an empirical formula toget the exact instruction count. This formula is verified
for more than fifteen micro-benchmarks as well as three real life applications. The applications are blowfish algorithm,
matrix multiplication and image smoothing. Results of someof them are presented in Figure 2(b) and our results show
an exact count. Instruction count model is shown in Figure 1(a)&(b). It demonstrate the number of instructions that are
encountered in different phases, like kernel launch, blockexecution, block to block transfer etc. We have formulated
this in eq. 2 and eq.3.

Memory access time is calculated from memory cycles for all memory instructions in the kernel. As per the
memory access pattern and GPU execution style, we have devised various expressions to calculate memory cycles and
final expression is shown in eq.4. We have also developed a in-house cache simulator for GPUs and the same is also
verified with dineroVI. Figure 3 demonstrates the memory cycles required for executing a kernel on multi threaded
SIMT architecture.

3 Results of performance estimation
Results of three different applications are presented in Figure 4. Blowfish algorithm has two parts; one is encryption
and the other is decryption. The block size considered here is 256 threads. This is fixed due to the requirement of
shared memory for storing P and S arrays. In this case we have over-estimated the execution time with a constant ratio.
It is because we assumed that computation period is uniformly distributed over the whole warp execution time. But

2

DRAM_req

L1_req

L1_req

L1_req

L1_req

L2_req

L2_req

L2_req

L2_req

L2_req

L1_req

L1_req

DRAM_req

DRAM_req

DRAM_req

DRAM_req

Departure Delay

inst 1's MAX(Latency) inst 2's MAX(Latency)

thread 0

thread 1

thread 2

thread k

thread k+1

thread k+2

thread 30

thread 31

inst 1 inst 2

(a) Memory Latency Test

inst 1warp 1

warp 2

warp 3

warp n

Average mem_cycles

average point

inst 1

inst 1

inst 1

inst 2

inst 2

inst 2

inst 2

inst 2

inst 3

inst 3

inst 3

inst 3

inst 3

inst m

inst m

inst m

inst m

inst m

warp 4

MAX(Latency) of inst 1 and warp 1

(b) Computation of average memory cycles

Figure 3: Memory Cycle Count

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25

Ti
m

e
(µ

Se
c)

#Blocks per SM

Blowfish Encryption

Measured Time
Estimated Time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120 140

Ti
m

e
(µ

Se
c)

#Blocks per SM

Matrix Multiplication

Measured Time
Estimated Time 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 0 5 10 15 20 25 30 35

Ti
m

e
(µ

Se
c)

#Blocks per SM

Image Smoothing

Measured Time
Estimated Time

Figure 4: measured vs estimated time comparison

in actual execution initial computation period is very small and a large amount of computation period is sandwiched
between two memory requests (Figure 1(a)). Results of Matrix multiplication and Image smoothing are more accurate.
In these two applications memory access density is more as compared to Blowfish and this ensures that the effect of
non-uniform distribution of computation period has less impact.

4 Performance analysis of Map-Reduce framework
Performance enhancement of map-reduce framework is the second part of my research. We have used MARS MR
framework [3] for the analysis of behavior of different GPUs. Important phases of MARS aremapperCount,
prefixSum, mapper, group, reducerCount andreducer. We have used eight different applications to perform
the study and experiments for the MARS on different architectures. These applications are Inverted Index (II), Ma-
trix Multiplication (MM), Page View Count (PVC), Page View Rank (PVR), Similarity Scores (SS), String Match
(SM), Word Count (WC), and Image Smoothing (IS). Due to spaceconstraints, results of only three applications are
presented here.

5 Experiments and Analysis
We have performed different sets of experiments to compare the architectures, explore the MARS and realize the
impact of Fermi architecture. All the applications have implemented on 9800GT, Quadro600 and GTX590 GPUs with
the help of MARS MR framework. Figure 5 shows the execution times for three different applications. The x-axis of
the graphs represent the size of the data used in the applications. The Quadro600 GPU is on an average 1.8x slower as
compared to the 9800GT. On the other hand GTX590 is on an average 5x faster as compared to Quadro600 and on an
average 2.5x faster than 9800GT. Variations in the architecture have imposed both positive as well as negative impact
on the performance.

3

 0

 1000

 2000

 3000

 4000

 5000

 6000

1.
00

e+
08

1.
50

e+
08

2.
00

e+
08

2.
50

e+
08

3.
00

e+
08

3.
50

e+
08

4.
00

e+
08

4.
50

e+
08

Ti
m

e
(m

ili
se

c.)

Data Size in Bytes

String Match

Quadro600 Time
9800GT Time
GTX590 Time

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

0.
00

e+
00

2.
00

e+
06

4.
00

e+
06

6.
00

e+
06

8.
00

e+
06

1.
00

e+
07

1.
20

e+
07

1.
40

e+
07

1.
60

e+
07

1.
80

e+
07

Ti
m

e
(m

ili
se

c.)

Data Size in Bytes

Image Smoothing

Quadro600 Time
9800GT Time
GTX590 Time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

0.
00

e+
00

5.
00

e+
06

1.
00

e+
07

1.
50

e+
07

2.
00

e+
07

2.
50

e+
07

3.
00

e+
07

3.
50

e+
07

Ti
m

e
(m

ili
se

c.)

Data Size in Bytes

Matrix Multiplication

Quadro600 Time
9800GT Time
GTX590 Time

Figure 5: MR execution time comparison: 9800GT, Quadro600 and GTX590

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1.
00

e+
08

2.
00

e+
08

3.
00

e+
08

4.
00

e+
08

5.
00

e+
08

6.
00

e+
08

7.
00

e+
08

8.
00

e+
08

9.
00

e+
08

Ti
m

e
(m

ili
se

c.)

Data Size in Bytes

String Matching

OFF
16K
48K

OFF_onlyCUDA
16K_onlyCUDA
48K_onlyCUDA

 0

 100

 200

 300

 400

 500

 600

 700

 800

0.
00

e+
00

5.
00

e+
06

1.
00

e+
07

1.
50

e+
07

2.
00

e+
07

2.
50

e+
07

3.
00

e+
07

3.
50

e+
07

4.
00

e+
07

Ti
m

e
(m

ili
se

c.)

Data Size in Bytes

Image Smoothing

OFF
16K
48K

OFF_onlyCUDA
16K_onlyCUDA
48K_onlyCUDA

 0

 500

 1000

 1500

 2000

 2500

0.
00

e+
00

5.
00

e+
06

1.
00

e+
07

1.
50

e+
07

2.
00

e+
07

2.
50

e+
07

3.
00

e+
07

3.
50

e+
07

Ti
m

e
(m

ili
se

c.)

Data Size in Bytes

Matrix Multiplication

OFF
16K
48K

OFF_onlyCUDA
16K_onlyCUDA
48K_onlyCUDA

Figure 6: Effect of L1 cache re-configuration
6 Effect of L1 re-configuration
L1 cache of Fermi GPUs can be configured in three different ways. L1 can be switched ’OFF’ at compile time and/or
size of L1 can be set to 16KB or 48KB at run time. Effect of L1 configuration is shown in Figure 6. Performance
variation ranges from 10% to 200% with different configurations for different applications. L1 with 16KB size results
in worst performance while 48KB size and switched ’OFF’ L1 are giving nearly equal performance boost. One
possible reason is that the conflict cache misses are reducedsignificantly for 48KB with respect to 16KB. It is easy to
conclude that the size of memory access and density of memoryaccesses are the key deciding factor for the selection
of proper configuration of L1 cache. Our performance metricsand results are very helpful in the selection of the best
configuration for implementers of these applications.

7 Performance enhancement of MARS
MR framework gives a generic application port mechanism butat the cost of the performance. Two techniques have
been developed for the performance enhancement in MARS MR framework. One is focused on “group phase” and
other is targeted to the “auxiliary functions”. Objective of these techniques is to get benefit of new GPU technologies.
Each technique is explained in the following subsections,

7.1 Group phase enhancement
It was observed from the profiled data that group phase contributes between 43% and 90% to the over all execution
time of the application. The comparison part of bitonic sortin group phase took more then 90% of group phase time
for string comparison. The original algorithm of string comparison, character wise comparison is used to implement
string comparison. Therefore total number of comparisons are equal to the number of characters in the smaller strings
and same number of memory requests are generated. In our methodology we compare two strings using packed data
of four bytes. We read data as a chunk of four bytes and assign to an integer variable. We have saved approximately
75% comparisons. Figure 7 shows that a maximum 2x speed up andaverage of 1.5x speed up has been achieved.

7.2 The auxiliary functions enhancement
ThemapperCount andreducerCount functions are treated as the auxiliary functions as they arenot part of appli-
cation algorithm but they play an important role in the map and reduce phases of MARS execution. These functions
have three consecutive read and write instructions. This means a total of six instructions in which read and write
operations are executed alternatively. When a read instruction is executed through a warp, one miss can bring data for

4

 0

 500

 1000

 1500

 2000

 2500

0.
00

e+
00

5.
00

e+
07

1.
00

e+
08

1.
50

e+
08

2.
00

e+
08

2.
50

e+
08

Ti
m

e
(m

ili
 s

ec
.)

Data Size in Bytes

Inverted Index

Normal Group Phase
Improved Group Phase

Normal overlAll
Improved overAll

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0.
00

e+
00

5.
00

e+
07

1.
00

e+
08

1.
50

e+
08

2.
00

e+
08

2.
50

e+
08

Ti
m

e
(m

ili
 s

ec
.)

Data Size in Bytes

Page View Count

Normal Group Phase
Improved Group Phase

Normal overlAll
Improved overAll

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.
00

e+
00

2.
00

e+
07

4.
00

e+
07

6.
00

e+
07

8.
00

e+
07

1.
00

e+
08

1.
20

e+
08

1.
40

e+
08

1.
60

e+
08

1.
80

e+
08

Ti
m

e
(m

ili
 s

ec
.)

Data Size in Bytes

Word Count

Normal Group Phase
Improved Group Phase

Normal overlAll
Improved overAll

Figure 7: MARS Enhanced by optimizing group phase

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1.
00

e+
08

2.
00

e+
08

3.
00

e+
08

4.
00

e+
08

5.
00

e+
08

6.
00

e+
08

7.
00

e+
08

8.
00

e+
08

9.
00

e+
08

Ti
m

e
(m

ili
 s

ec
.)

Data Size in Bytes

String Matching

unoptimized
optimized

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.
00

e+
00

2.
00

e+
07

4.
00

e+
07

6.
00

e+
07

8.
00

e+
07

1.
00

e+
08

1.
20

e+
08

1.
40

e+
08

1.
60

e+
08

1.
80

e+
08

Ti
m

e
(m

ili
 s

ec
.)

Data Size in Bytes

Word Count

unoptimized
optimized

 0

 20

 40

 60

 80

 100

 120

 140

 160

5.
00

e+
01

1.
00

e+
02

1.
50

e+
02

2.
00

e+
02

2.
50

e+
02

3.
00

e+
02

3.
50

e+
02

Ti
m

e
(m

ili
 s

ec
.)

Data Size in Bytes

Inverted Index

unoptimized
optimized

Figure 8: mapperCount function enhanced by cache sensitivecoding
all other threads of that warp for this read instruction. Butnext instruction is write which makes the whole line dirty
and remaining threads of the warp again generate cache miss.Instead of writing alternatively, we have used delayed
writing for these functions. First all read operations are performed into the shared memory. Finally we write the result
into the global memory. By this way we have saved around 93 cache misses per thread in place of 96 cache misses per
thread. We use synchronization barrier so that all read operations must finish before starting of the write operation.
Figure 8 shows the time taken bymapperCount function for unoptimized and optimized code.

8 Conclusion
Modern GPUs are integrated with many heterogeneous platforms as accelerator. Our performance estimation model
will be very useful for estimating performance of large applications, specially when application partitions are required
to be ported onto a heterogeneous platform. The average estimation errors for the three selected applications, namely
blowfish, matrix multiplication and image smoothing were 55%, -7.76% and 1.8% respectively (IPDPSw’2012 [5]).
Our study explains the possibility of exploiting the features of new GPU architectures for MR framework. Our results
clearly demonstrate that the MR can be used universally for different kind of applications with minimum amount
of performance penalty. Developers have to concentrate only on improving the algorithmic parts of the application
and deployment of algorithms on distributed architecturesis taken care of by MR framework. Our performance
enhancement technique performed for MARS on FERMI architecture helps to reduce the performance gap between
CUDA implementation of the application and MR implementation.

References
[1] Ben Cope, Peter Y.K. Cheung, Wayne Luk, and Lee Howes. Performance comparison of graphics processors to reconfigurable logic: A case

study. IEEE Transactions on Computers, 59.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplied data processing on large clusters. OSD2004, 2004.

[3] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. Mars: a mapreduce framework on graphics processors.
In Proceedings of the 17th international conference on Parallel architectures and compilation techniques.

[4] Sunpyo Hong and Hyesoon Kim. An analytical model for a gpuarchitecture with memory-level and thread-level parallelism awareness.
SIGARCH Comput. Archit. News, 37, June 2009.

[5] Arun Kumar Parakh, M. Balakrishnan, and Kolin Paul. Performance estimation of gpus with cache. In Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSw), 2012 IEEE 26th International, pages 23842393, may 2012.

5

